Cyber-Physical Systems: Some Food for Thought

Ness B. Shroff

Electrical and Computer Engineering & Computer Science and Engineering E-mail: shroff.11@osu.edu

What is CPS?

By NSF:

"…engineered systems that are built from, and depend upon, the seamless integration of computational algorithms and physical components." --- [nsf14542.pdf, pp. 1]

Some Defining Characteristics

Cyber-physical coupling

- Every PHY component with Cyber capability

-Networked at large and even extreme scales (nano vs. galacial)

Systems of systems

- Complex & cross-cutting spatial-temporal constraints

New interactions between communication/computing/control

— High degree of automation for large # of non-tech-savvy people

Domains of CPS

Energy Systems

Transportation systems

Agricultural Systems

Manufacturing Systems

Buildings Systems

Medical Systems

INFOCOM'14 CPS Panel

Credit: Google images

Cross-Disciplinary

- PHY Modeling and Hybrid Systems Design
 - Require deep understanding of application domain
 - Human interface and interact with the systems
- Communications and Networking
 - Real-time sensing, tracking, and adaptation
 - Distributed control and computation
- Data Analytics
 - Machine learning
 - Prediction and optimization
- Safety and Security
 - > PHY limits, cyber holes, privacy ...
 - > Greater flexibility \rightarrow greater vulenerability

Important Challenges

Modeling

- Accurate and tractable computational abstractions for system
- Composition and interaction of Cyber and PHY components

Algorithm Design

- ► Low Complexity, self-adaptive
- Distributed vs. centralized
- Incomplete/imperfect state knowledge (due to size, costs....)

Performance Optimization

- > Optimality, stability , convergence speed
- Delay, robustness (safety), scalability
- Security, privacy?

Modeling CPS: Respect PHY Laws

Different levels of complexity in modeling power systems

DC Flow Models (Kirchhoff's Law)

- > Based on " $\sin(\theta) \sim = \theta$ if θ small" (i.e., ignore nonlinearity & reactive power)
- Analytically easy to work with (due to linearity, convexity...)
- Good for day-ahead & long-term planning (e.g., electricity market)

AC Flow Model

- Doesn't ignore nonlinearity, capture active/reactive powers
- Noncovex, notoriously hard to work with (OPF open over 50 yrs)
- > Needed for more accurate steady-state analysis in shorter time-scale

Transient Models

- Power system dynamics (still being actively researched)
- > Hard to work with, stability is main concern
- Needed for tasks (e.g., UFLS) at fast time-scale (e.g., 10^-1 secs)

Important Challenges

Modeling

- > Accurate and tractable computational abstractions for PHY and Human
- Composition and interaction of Cyber and PHY components

Algorithm Design

- Low Complexity, self-adaptive
- Distributed vs. centralized
- Incomplete/imperfect state knowledge (due to size, costs....)

Performance Optimization

- > Optimality, stability , convergence speed
- Delay, robustness (safety), scalability
- Security, privacy?

Important Challenges

Modeling

- Accurate and tractable computational abstractions for PHY and Human
- Composition and interaction of Cyber and PHY components

Algorithm Design

- ► Low Complexity, self-adaptive
- Distributed vs. centralized
- Incomplete/imperfect state knowledge (due to size, costs....)

Performance Optimization

- > Optimality, stability , convergence speed
- Delay, robustness (safety), scalability
- Security, privacy

Complex Interactions

- In a variety of CPS systems, there can be complex, sometimes unexpected interactions that must be carefully modeled, analyzed, and designed for.
- Discuss examples in:
 - Green Buildings
 - Sensor Networks with Renewable Energy
 - Smart Grid
 - Electric Grid …

Green Buildings

There could be unintended/surprising coupling effects E.g., in "green" buildings:

Systems with Renewable Energy

- Sensor networks w/ renewable energy.
 - Traditional approaches of energy management (e.g., keeping batteries full) can leads to poor performance
 - Need to find right balance between [Mao,Koksal,Shroff,TAC12]:
 - —Energy conservation: Missed recharging opportunities b/c battery full → data loss or reduced capacity
 - -Over-aggressive use of energy leading to potential loss of connectivity/coverage $\mu(\bullet)$ concave

Smart Grid

- Smart Grid: Random demands meet uncertain supply
 - Distributed renewable supplies of energy
 - Individual actions may cause instabilityGreater vulnerability to stealthy attacks

Flexibility results in greater vulnerability

A stealthy adversary can intercept/modify control messages

- Stealth: It may modify only a fraction of msgs, and always ensure feasibility
- Damage can be quite significant (e.g., increased power cost)

Electric Grid: Blackout

- US-Canada 2003 Blackout
 - > 2nd largest in history, 55m people affected, cost \$10 billions
- Causes [US-Canada Pwr Sys Ourage Task Force '04]:
 - > A combination of many physical-computer-human errors
 - Timeline: 8/14/2003, 12:15pm—16:05 (nearly 4 hours)
 - Key Cyber-failure: MISO's centralized contingency analysis failed to converge in 4 hrs due to erroneous Topo. Info. by communications problems

Centralized vs. distributed? Convergence speed?

Fast Distributed Contingency Analysis

- A Second-order Distributed Approach [Liu,Xia,Shroff,Sherail Sigmetrics'14]
 - RST-Based Reformulation under DC
 - > Interior-point + 2^{nd} -order framework
 - Distributed design by exploiting RST

Features

- Quad. rate of convergence: $O(\log_2 \log_2(K/\epsilon))$ (small constant for all ϵ of practical interests)
- All iterates feasible (guarantees safety even^{[±]/₂} terminated prematurely)
- Enable use of many efficient distributed spanning tree algs. (Exactly goal of CPS!)

Summary

Many opportunities

- Many enabling technologies: communications & networking, massively parallel cloud computing, real-time sensing & tracking...
- Leverage existing knowledge/tools: Distributed control; stochastic optimization; large-system dynamics, decision processes, approx. algo ...

Many challenges:

- Tailored design: For specific 'CPS application' needs
 - Deep understanding, hardly 'one size fits all' solutions
- Speed and Low-latency: Fast control algorithms, low delay data collection...
- Cascading failures in cyber-physical systems: Failure of Cyber systems could cause failure/instability in PHY systems & vice versa...
- Performance vs security: Greater controllability/elasticity also exposes vulnerability...

Backup Slides