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What is CPS? 

 By NSF: 

 “…engineered systems that are built from, and depend upon, the 

seamless integration of computational algorithms and physical 

components.” --- [nsf14542.pdf, pp. 1] 

 Some Defining Characteristics 

 Cyber-physical coupling 

—Every PHY component with Cyber capability 

—Networked at large and even extreme scales (nano vs. galacial) 

 Systems of systems 

—Complex & cross-cutting spatial-temporal constraints 

 New interactions between communication/computing/control 

—High degree of automation for large # of non-tech-savvy people  
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Domains of CPS 

Credit: Google images 

Energy Systems Transportation systems Agricultural Systems 

Manufacturing Systems Buildings Systems Medical Systems 
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Cross-Disciplinary 

 PHY Modeling  and Hybrid Systems Design 

 Require deep understanding of application domain 

 Human interface and interact with the systems 

 Communications and Networking 

 Real-time sensing, tracking, and adaptation 

 Distributed control and computation 

 Data Analytics 

 Machine learning  

 Prediction and optimization  

 Safety and Security 

 PHY limits, cyber holes, privacy … 

 Greater flexibility  greater vulenerability 
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Important Challenges 

 Modeling 

 Accurate and tractable computational abstractions for system 

 Composition and interaction of Cyber and PHY components 

 Algorithm Design 

 Low Complexity, self-adaptive 

 Distributed vs. centralized 

 Incomplete/imperfect state knowledge (due to size, costs….) 

 Performance Optimization 

 Optimality, stability , convergence speed 

 Delay, robustness (safety), scalability 

 Security, privacy? 
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Modeling CPS: Respect PHY Laws 

Different levels of complexity in modeling power systems 

 DC Flow Models (Kirchhoff‟s Law) 

 Based on “sin(θ)~= θ if θ small” (i.e., ignore nonlinearity & reactive power) 

 Analytically easy to work with (due to linearity, convexity…) 

 Good for day-ahead & long-term planning (e.g., electricity market) 

 AC Flow Model 

 Doesn‟t ignore nonlinearity, capture active/reactive powers 

 Noncovex, notoriously hard to work with (OPF open over 50 yrs) 

 Needed for more accurate steady-state analysis in shorter time-scale 

 Transient Models 

 Power system dynamics (still being actively researched) 

 Hard to work with, stability is main concern 

 Needed for tasks (e.g., UFLS) at fast time-scale (e.g., 10^-1 secs) 
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Complex Interactions 

 In a variety of CPS systems, there can be complex, sometimes 

unexpected interactions that must be carefully modeled, 

analyzed, and designed for.  

 Discuss examples in:  

 Green Buildings 

 Sensor Networks with Renewable Energy 

 Smart Grid 

 Electric Grid … 
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Green Buildings 

There could be unintended/surprising coupling effects 

E.g., in “green”buildings: 

Green Buildings 

Energy-Efficient Lighting 

Producing less heat 

HVAC Systems 

Consumer more energy 

to balance human 

comfort 

http://www.cbc.ca/news/canada/manitoba/effi

cient-lighting-equals-higher-heat-bills-study-

1.856047 

A deeper understanding and 

domain knowledge is critical 

in designing for CPS 
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 Sensor networks w/ renewable energy.  

Traditional approaches of energy management (e.g., 
keeping batteries full) can leads to poor performance  

Need to find right balance between 
[Mao,Koksal,Shroff,TAC12]: 

—Energy conservation: Missed recharging opportunities b/c battery 
full  data loss or reduced capacity 

—Over-aggressive use of energy leading to potential loss of 
connectivity/coverage 
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Smart Grid  

 Smart Grid: Random demands meet uncertain supply  

 Distributed renewable supplies of energy 

 Opportunities:  

 Smart appliances: Power control and delayed scheduling 

 Dynamic Pricing: Exploit time elasticity, and power management 

 Shift demands away from peak time 

 Spread out power usage  

 

 

Minimize Cost, and improve overall efficiency, but … 

 Individual actions may cause instability 

 Greater vulnerability to stealthy attacks 
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Flexibility results in greater vulnerability 

 A stealthy adversary can intercept/modify control messages  

 Stealth: It may modify only a fraction of msgs, and always ensure feasibility 

 Damage can be quite significant (e.g., increased power cost) 
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Electric Grid: Blackout 

Centralized vs. distributed? 

Convergence speed? 

 US-Canada 2003 Blackout 

 2nd largest in history, 55m people affected, cost $10 billions  

 Causes [US-Canada Pwr Sys Ourage Task Force „04]: 

 A combination of many physical-computer-human errors 

 Timeline: 8/14/2003, 12:15pm—16:05 (nearly 4 hours) 

 Key Cyber-failure: MISO‟s centralized contingency analysis failed to 

converge in 4 hrs due to erroneous Topo. Info. by communications problems  
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Fast Distributed Contingency Analysis 

 A Second-order Distributed Approach 

[Liu,Xia,Shroff,Sherail Sigmetrics‟14] 

 RST-Based Reformulation under DC 

 Interior-point + 2nd-order framework 

 Distributed design by exploiting RST 

 Features 

 Quad. rate of convergence: 

O(log2log2(K/ε)) (small constant for all ε of  

practical interests) 

 All iterates feasible (guarantees safety even 

terminated prematurely) 

 Enable use of many efficient distributed 

spanning tree algs. (Exactly goal of CPS!) 
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Summary 

 Many opportunities 

 Many enabling technologies: communications & networking, massively 

parallel cloud computing, real-time sensing & tracking… 

 Leverage existing knowledge/tools: Distributed control; stochastic 

optimization; large-system dynamics, decision processes, approx. algo … 

 Many challenges:  

 Tailored design: For specific „CPS application‟ needs 

— Deep understanding, hardly ‘one size fits all’ solutions 

 Speed and Low-latency: Fast control algorithms, low delay data 

collection… 

 Cascading failures in cyber-physical systems: Failure of Cyber systems 

could cause failure/instability in PHY systems & vice versa... 

 Performance vs security: Greater controllability/elasticity also exposes 

vulnerability… 
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